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In Part I of this study, a method was developed for the solution of the pressure Poisson 
equation, with Neumann boundary conditions, on a non-staggered grid. This method was 
used to determine the pressure when given the velocity field from a stream function-vorticity 
solution, In Part II, the pressure equation is solved iteratively with the momentum 
(Navier-Stokes) equations on a non-staggered grid. In this case, the solution of the pressure 
equation not only provides the pressure, but also serves to indirectly satisfy the continuity 
equation. Tnis primitive variables formulation has a major advantage over the stream 
function-vorticity method in its applicability for three-dimensional flow. Numericdi results are 
obtained and compared with the stream function-vorticity results for the driven caviiy of 
Part I. $; 1987 Academic Press, Inc. 

INTRODUCTION 

Two methods are well known for the soution of the Incompressible Wavier- 
Stokes equations in primitive variables; the artificial compressibihty method and t 
pressure Poisson equation method. 

In the artificial compressibility method, which was first suggested by Chorin [I I9 
the time derivative of the pressure divided by a large constant is added to the con- 
tinuity equation. The addition of the time-derivative term to continuity allows 
use of standard compressible flow techniques for the incompressible equations. C 
and erkle [Z] investigated the stability and convergence characteristics of an 
implicit method for this system of equations. They recommended that the constanr 
of the time derivative term in the continuity equation be chosen near the free- 
stream velocity to speed convergence of the numerical solutions ~steady-state 
solutions only). Rizzi and Eriksson [3] examined the same system of equations an 
arrived at similar conclusions. 

The pressure Poisson equation approach has been developed 
ch in 1965 [4]. In their formulation, the unsteady momentum e 
ed for the velocity field by marching in time. The pressure is calcula 
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discrete Poisson-type equation derived from the discrete divergence of the discrete 
momentum equation. The Poisson equation replaces the continuity equation which 
is satisfied indirectly through the solution of the pressure equation. Neumann boun- 
dary conditions are obtained for the pressure by using the momentum equation at 
the boundaries. As was discussed in Part I of this study, solutions for the Poisson 
equation with Neumann boundary conditions require the satisfaction of a compac- 
tibility condition. The new method we proposed in Part I satisfies this condition on 
non-staggered grids. 

In the present study, numerical solutions are obtained for the Navier-Stokes 
equations on a non-staggered grid. The parabolic momentum equation is solved for 
the velocity field by marching in time using the simple explicit approach, while the 
elliptic pressure equation is solved at each time step using the successive-over- 
relaxation method. Although the calculations presented here are for steady-state 
flow, the method is valid for both steady and unsteady flow solutions. Details of the 
method are outlined in the following sections. 

MATHEMATICAL FORMULATION 

The momentum and continuity equations for incompressible laminar flow are 
written in Cartesian coordinates x and I;. 

The x-momentum equation is 

u,+uu,+vu,= -P,+~(u,,+uyy). (1) 

The y-momentum equation is 

v, + uv, + vvy = -P, + & (v,, + VJ’ 

The continuity equation is 

u,+v,=o. (3) 

In Eqs. ( 1 k( 3), P, U, and ZJ are the static pressure, velocity component in the x- 
direction, and velocity component in the y-direction, respectively. Re is the 
Reynolds number. 

The momentum equations (1) and (2) are solved for the velocity components u 
and v, respectively, by marching in time. The pressure P is calculated from a 
Poisson-type equation which is derived from the momentum equations (1) and (2). 

By differentiating Eq. (1) w.r.t x and Eq. (2) w.r.t y and adding, one obtains 

P,+P,=a-DD,, (4) 
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where 

ci = -(uu, + vuy)x - (uv, -i- V’“‘J>> (4a) 

and 

Equation (4) is a second order elliptic partial differential equation of the 
type. It is explicitly independent of the Reynolds number, because the 
terms are eliminated by the continuity equation. Aside from the unsteady 
Eq. (4) for the static pressure is similar to Eq. (4) of Part I of this st 
dilation D is not present in Eq. (4) of Part I because the continuity equati 
tically satisfied by the stream function-vorticity formulation. The governing 
equations (l)-(4) for the variables U, U, and P are not independent. The continuity 
equation (3) is eliminated from the system of equations, and it is iteratively satisfied 
through the solution of the pressure Eq. (4) as follows: 

The unsteady term D, in Eq. (4) is approximated by 14, 51, 

where the superscripts n and n + 1 refer to the time levels t and f+ Al, respectively. 
In order to attempt to satisfy the continuity equation (3), D”+ ’ is set equal to1 

zero. D” is retained in Eq. (4~) to overcome nonlinear instabilities in the solution of 
the momentum equations (1) and (2) [4, 51. Supporting evidence for the above 
arguments is given in the numerical solutions section. 

Boundary Con&ions 

Referring to Fig. 1 of Part I, the following boundary conditions for Eqs. (1 ), (2), 
(4) are adopted, 

u=O at x=(0, l)andy=O i5a) 

Z4=l at y=l 15b) 

u=o at x= (0, 1) and y= (0, 1) (SC) 

-P,-uu,+vu,+$-p.y at x=(0, I) 

-P,=uvx+vv,“--$ri,x at Y = (0, 1), 

where 

581/70,1-13 
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Equation (6) are Neumann-type boundary conditions for the pressure. The dif- 
fusion terms in Eq. (6) are written in terms of the vorticity w following the method 
of Part I. 

Existence and uniqueness of a solution to the pressure Poisson equation (4) and 
the Neumann boundary conditions (6) require the satisfaction of Eqs. (6) and (7) of 
Part I. 

NUMERICAL SOLUTIONS 

The governing equations (l), (2), and (4) are approximated on a non-staggered 
grid with grid increments Ax= Ay =h. All the spatial derivatives in Eqs. (l), (2), 
and (4) are approximated using second order accurate finite-difference formulas. 

Finite-Difference Approximations for Eqs. (I) and (2) 

The time derivative terms in Eqs. (1) and (2) are approximated using forward 
time differences, 

At 
U n+l=U-- [U;,i(Uj+~.i-Uj-~,i)+~j,j(~j,i+1-~i,i-1)+Pi+I,i-Pi-I,il 

2h 

+At(~j+l,j+ui-lj+~ii+l +u,j-,-4~ii)/‘h~Re / , (74 

V n+l,D-$ [Ui~j(Ui+I,j-vi-~,j)+vi,j(Ui,j+~ -zli,j-l)+pi,j+l -pi,j-ll 

+ At(ui+ I,i+ vi- I,i + ~i,j+ 1 + VU- 1 - 4U,j)/h2Re. (7b) 

The right-hand sides of the above equations are computed at the time level ~1. 
It is interesting to note here that the final form of Eq. (4) (after enforcing 

D n+l =0) can be obtained by direct substitution of Eqs. (7) into Eq. (3) [6]. This 
confirms the development thta led to the pressure Poisson equation (4). The con- 
tinuity equation is satisfied in continuum form in Eq. (4) (similar to the $-o for- 
mulation ). 

Finite-Difference Approximation for Eq. (4) 

Following the method of Part I for the solution of the pressure Poisson equation 
and referring to Fig. 2 of Part I, one obtains 

(PA - (PA + (P,)n - (P,)s 
= (uu, + uu,), - (uu, + vu& + (uu, + vuy)s 

- (uv, + vuy), + (u, - u, + v, - u,)/At. (8) 
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At the locations e, w, n, and s, the variables in Eq. (8) are approximated from the 
variables at the grid points by averaging. For example, at the location e, 

(CA = (Ui+ 1,j + %,jNUi+ 1./- %,j)/2h 

Cvuy)e= C”,+l,j+ui,j)(ui+ l,j+l+ ui,j+i-“i+ l,j-1-"i,j-l~14h 

t”)e = t”i+ 1,j + u,j)/2. (9s) 

Similar expressions are obtained at the locations w, n, and s. By s~b§tit~t~~~ 
these relations in Eq. (8), one obtains 

pi+ 1,j +p~-l,j+pi,j-lpi,j+l-4pi,j 

=haj,j+(Ui+l,j-Ui-l,j+Uj,j+1-Ui,j-1)h/2At, 

where 

-ci,J = C”i+ 1,j + ui,,i)(“i+ I,, - u,j)/2 + tvi+ I,j + “i,jl@i+ I,j+ 1 

+ U~J+I -ui+l,j-l -~i,i-l)/8-(~,i+~i~l,j)(uij-~i-l,j)/Z 

- Cvt,j+ vi- l,j)(“i,J+ 1 + ui- l./+ I- uij- I- ui- l,j- I)/$ 

+ (ui,j+ I + Ui,j)(Vi+ l,j+ I+ Vi+ l,j-ui- l,j+ 1 -vi- l,j)/S 

+ (‘Cl+ 1 + zli,j.l(vi,j+ 1 - ui,j)/2 - C”i,j + ui,j- 1lbi+ 1.j 

fUi+l,j-l1-Oi-~,,-Ui-~,j-~)/8-(Ui,~+L‘i,j-~)(Ui,j-Ui,j-~)/2, (IlOb) 

Finite-difference approximations for the pressure Neumann boundary conditions 
(4) are obtained at the grid locations i = (t, M - 1) and j = (t, N - 1) (see Part I). 
and N are the number of grid points in the x- and y-directions, respectively, 

p2,j-pl.j= -Cw2,j+ 1 + wl,j+l -w2,j- 1 -m,,j-,Y4Re 

- t”2,j + Ul,j)(U2,j - ul,j)/2 - (‘2,j + vl,jf 

X(UZ,~+I +~1,~+1-U2,j-l-~l,j-l)/8 (2<j<N-1) (H la) 

PM, - P M- l,j= 40 M,j+l+“W-l,j+l -wM,j-l -oM-l,i-lPJRe 

- t”M,j $UM-,,j)(U,,j-u,-,,,)/2-(UM,j-tVhl--,j) 

X(U,-l,j+~+u,,j+1-~,-~,j-~-UM.j--1 t/s (2djQN- 1) 

bnlb) 

Pi,2 - Pi,1 = (ai+ 1,2 + ai, I,~ - wi- 1,2- w- l,lPRe 

- Cut,2 + ui,l)(“i+ 1,2 + “i+ 1,l - ui- 1.2 - ui- l,lI/s 

- b2.2 + vi,l )(“i,2 - zli,l l/2 (2<1’6M-1) 
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pi,N-pi,N- 1 = (Oi+ 1,N + @i+ 1,N- 1 -mi- l,~-mi- I,N- ,)/4Re 

- (‘i,N + vi,N- I)(“i,N- Vi,N- 1)/z (26iGM-1). (lid) 

Note that 

Ul,j= UM,j= Vl,j= vMzj=o (1 d j<N) (124 
ui,l = vi,1 = ujj,? - -0 (l<iidM) (12b) 

Ui,N = 1 (1 <i<M). (12c) 

RESULTS AND DISCUSSION 

Equation (10) is solved for the pressure using the successive over-relaxation 
method (SOR). The continuity equation is implied at each grid point in the 
solution of Eq. (10). Then the velocity components u”+ ’ and vn+’ are obtained 
from Eqs. (7a) and (7b), respectively. The explicit marching procedure is used here 
for the solution, of the momentum equations for simplicitly. 

For steady-state flow, the transient solutions of Eqs. (7) and (10) are not 
physically meaningful, and consequently Eq. (10) need not be iterated to full con- 
vergence at each time step (few iterations are necessary for smooth results). 
However, for unsteady flow the pressure equation (10) be iterated to full con- 
vergence at each time step (in order to satisfy the continuity equation) before 
marching to the next time level. 

Numerical results are obtained for the driven cavity used in Part I of this study 
and shown in Fig. 1 of Part I. The computed results at Re = 100 using 41 x 41 grid 
points are compared with the results of Part I of this study. It can be seen from 
Figs. 1,2, and 3 that the vorticity, static pressure, and total pressure contours com- 

0 0 
--. 

(b) 

FIG. 1. Vorticity contours at Re= 100. (a) + --o formulation, (b) primitive variables formulation. 
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FIG. 2. Static pressure contours (ReC,) at Re= 100. (a) $-w formulation, (b) primitive variables 
formulation. 

puted using the primitive variable formulation are in excellent agreement with the 
results of the stream function-vorticity approach. The static and total pressure coef- 
ficients are defined in Part I of this study. 

Additional results are obtained in Figs. 4, 5, and 6 at Re = 400, using 71 x 71 grid 
points. The computed results are compared with the numerical results of Ref. [73 
which employed the stream function-vorticity fomulation. All calculations are 
obtained using a successive over relaxation factor 1.0 and a time i~cremc~t 
At= 0.012. The explicit time increment is governed by [5] At/h -L 1 and 
At/h2Re < a. A detailed comparison between the primitive variable and the stream 
function-vort~city formulations is given in Table I. 

FIG. 3. Total pressure contours (ReC,,) at Re= 100. (a) $ --w formulation, (b) primitive variables 
formulation. 
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ia (bl 

FIG. 4. Vorticity contours at Re = 400. (a) 3 --uI formulation, (b) primitive variables formulation. 

ial (bl 

FE. 5. Static pressure contours (ReC,) at Re =400. (a) rl/-o formulation, (b) primitive variables 
formulation. 

Ial (bl 

FIG. 6. Total pressure contours (ReC,,) at Re = 400. (a) I/-W formulation, (b) primitive variabIes 
formulation. 
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TABLE I 

Type Primitive variables Stream function-vorticity 

Continuity equation 

Pressure equation 

Boundary conditions 

Dependent variables the dependent variables are the 
velocity and the pressure 

the dependent variables are the 
stream function, the vorticity, 
and the pressure 

Governing equations the governing equations are the 
momentum and the pressure 
Poisson equation 

the governing equations are the 
stream function, the vorticity- 
transport, and the pressure 
Poisson equation 

Method of solution the momentum equations are 
solved using the exp!icit 
approach While the pressure 
equation is solved using the 
SOR method 

the governing equations are solved 

the continuity equation is replaced the continuity equation is iden- 
and indirectly satisfied by the tically satisfied by the use of a 
pressure Poisson equation stream function 

the pressure equation is soived 
iteratively at each time step 
(few iterations are anecessary 
for smooth results; 10 iterations 
are used here) 

the pressure equation is uncoup?ed 
from the stream function and 
vorticity equations. Zt is solved 
after the velocity field is com- 
puted 

the boundary conditions for the 
momentum equations are the 
no-flux and no-slip conditions. 
Neumann boundary conditions 
for the pressure are obtained 
from the momentum equations 

the boundary conditions for the 
stream function and the VOi.- 

ticity are obtained from the no- 
slip and no-flux conditions, 
Neumann boundary conditions 
of the pressure are obtained 
from the momentum equations 

CONCLUSIONS 

Numerical solutions for the incompressible Navier-Stokes equations in p~~~~v~ 
variables are obtained on non-staggered grids. The primitive variable for~~~~at~o~ 
has a major advantage over the stream function-vorticity od in its 
a~~~i~ab~lity for three-dimensional flow. En Part II. the ressure and veiocity 
equations are solved at each time step, which leads to an extra dilation term in the 
pressure Poisson equation. This additional term causes no problem in the com- 
patibility condition because the integral of the dilation over the solutio 
vanishes (from the global continuity). Thus the method developed in 
for the solution of the pressure Poisson equation without modi~catio~. 
puted results using the primitive variable formula . are in excellent 
with tbe results of the stream function-vorticity m 
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APPENDIX: NOMENCLATURE 

D dilation Eq. (4b) 
h grid spacing 
M, N number of grid points in x- and y-directions, respectively 
P static pressure 
s boundary contour enclosing the solution domain 
u, 0 velocity components in x- and y-directions, respectively 
u velocity of the cavity upper wall 
dS increment along the boundary contour S 
LHM, RHM summation of the left- and right-hand members of the compatibility 

Re 
o- 
Co 

Subscripts 

e, w n, s 

n 
4 Y 
i, j 

condition 
Reynolds number 
right-hand side of Eq. (4) 
vorticity 

refer to east, west, north, and south of the grid points (i, j), respec- 
tively 
refers to the outward normal to the boundary contour S 
refer to partial derivatives with respect to x and y, respectively 
refer to grid locations in x- and y-directions, respectively 

ACKNOWLEDGMENT 

This work was sponsored by the U.S. Offlice of Naval Research. 

REFERENCES 

1. A. J. CHORIN, J. Comput. Phys. 2, 12 (1967). 
2. D. CHOI AND C. L. MERKLE, AIAA J. 23, 1518 (1985). 
3. A. RIZZI AND L. ENKSSON, J. Fluid Mech. 163, 275 (1985). 
4. F. H. HARLOW AND J. E. WELCH, Phys. Fluids 8, 2182 (1965). 
5. P. J. ROACHE, Computational Fluid Dynamics (Hermosa, Albuquerque, NM, 1976), p. 194. 
6. J. D. HUDSON AND S. C. R. DENNIS, J. Fluid Mech. 160, 369 (1985). 
7. 0. R. BURGGRAF, J. Fluid Mech. 24, 113 (1966). 


